Hybrid photonic-plasmonic crystal nanocavities.
نویسندگان
چکیده
We propose a hybrid optical nanocavity consisting of photonic crystals coupled to a metal surface with a nanoscale air gap between. The hybridization of photonic crystal modes and surface plasmons across the gap forms hybrid cavity modes, which are highly confined in the low-loss air gap region. Deep subwavelength mode volume and high quality factor are demonstrated at telecommunication wavelength, resulting in an extremely large Q/V(m) ratio of 60,000 λ(-3). This new type of high-Q/V(m) broad-band hybrid nanocavity opens up opportunities for various applications in enhanced light-matter interactions.
منابع مشابه
Strong Optomechanical Interaction in Hybrid Plasmonic-Photonic Crystal Nanocavities with Surface Acoustic Waves
We propose dynamic modulation of a hybrid plasmonic-photonic crystal nanocavity using monochromatic coherent acoustic phonons formed by ultrahigh-frequency surface acoustic waves (SAWs) to achieve strong optomechanical interaction. The crystal nanocavity used in this study consisted of a defective photonic crystal beam coupled to a metal surface with a nanoscale air gap in between and provided ...
متن کاملFrom vertical-cavities to hybrid metal/photonic-crystal nanocavities: towards high-efficiency nanolasers
We provide a numerical study showing that a bottom reflector is indispensable to achieve unidirectional emission from a photonic-crystal (PhC) nanolaser. First, we study a PhC slab nanocavity suspended over a flat mirror formed by a dielectric or metal substrate. We find that the laser’s vertical emission can be enhanced by more than a factor of 6 compared with the device in the absence of them...
متن کاملDesign and simulation of D-shaped photonic crystal fiber plasmonic biosensor: Investigation of the effect of structural parameters on the amount of sensor
This article has no abstract.
متن کاملEnhanced Localized Surface Plasmonic Resonances in Dielectric Photonic Band-Gap Structures: Fabry-Perot Nanocavities & Photonic Crystal Slot Waveguides
We describe approaches to enhance localized surface plasmons by placing metallic nanoparticles into two different structures: (i) Fabry-Perot (F-P) resonant cavities, and (ii) Photonic crystal slot waveguides. Through synchronization of the plasmonic and resonant modes, electric field at the surface of the nanoparticles is enhanced by a factor of 4~20 compared with the nanoparticles in free spa...
متن کاملPlasmonic Nanocavities-based Aperiodic crystal for Protein-Protein Recognition SERS sensors
The revelation of protein-protein interactions is one of the main preoccupations in the eld of proteomics. Nanoplasmonics has emerged as an attractive surface-based technique because of its ability to sense protein binding under physiological conditions in a label-free manner. Here, we present a detailed experimental study of the use of aperiodic photonic nanocavities for plasmonic Surface Enha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS nano
دوره 5 4 شماره
صفحات -
تاریخ انتشار 2011